Drone Doing an Inspection of a Floating Solar Farm

Overcoming Maintenance Challenges Posed by Floating Solar Farms with Drones and Digital Twins

Technology Can Assist in the Smooth Functioning of Solar Sites Located on Water

The Drone Life & Raptor Maps

Floating solar farms, which are constructed on a body of water, are an innovative approach to harnessing solar power and an increasingly popular way to meet the ever-growing demand for renewable energy. However, floating solar farms come with unique challenges, as inspecting and maintaining these installations calls for specialized equipment and trained technicians. Fortunately, aerial thermography via drones, digital twin technology, and asset management software can help overcome these challenges. 

The global floating solar market was valued at $2.5 billion in 2021 and by some measures is expected to surpass $10 billion by 2030. As these installations become more popular, it is necessary for asset managers to consider not just how upkeep differs from more traditional ground-mounted or rooftop systems, but also their unique safety risks. By utilizing drones for data capture–and processing the data in a geo-referenced digital twin of a site – maintenance teams can improve safety, reduce costs, and increase efficiency, making floating solar farm operations more sustainable and scalable.

Table of Contents

Floating Solar Arrays: A Growing Trend in Renewable Energy

Floating solar arrays are a newer concept in the renewable energy industry and have gained traction worldwide in recent years. Unlike traditional solar farms, which are typically installed on the ground or on rooftops, floating solar farms are constructed on water bodies such as lakes, reservoirs, ponds, and even protected coastal areas. The technology involves the installation of photovoltaic (PV) panels on a floating platform that is anchored to the bottom of the water body.

Maintaining Solar Assets With Drones
What's included in YOUR GUIDE...

Techniques for Exposing Warrantiable Items on Your PV Sites.

A Proven Roadmap for Successfully Implementing Drones in Solar.

Strategies for Identifying DC Losses and Avoiding Downtime.

One of the key benefits of floating solar is that it makes use of underutilized water surfaces, which are often abundant in many regions, thereby optimizing land utilization. Also, floating solar panels are more efficient than ground-mounted solar panels, as the water surface provides natural cooling, which reduces the panels’ temperature, leading to higher energy output.

As of late 2022, the total capacity of floating solar installations worldwide is estimated to be around 3.0 GW, which is a small fraction of the 700GW total solar capacity for land-based systems. However, projections suggest that this figure will rise significantly over the next few years. According to a report by the World Bank, the potential for floating solar globally is estimated to be around 400 GW, which is equivalent to the current installed capacity of solar PV worldwide.

As the demand for renewable energy continues to grow, floating solar technology is expected to become an increasingly important contributor to the global energy mix. With its numerous benefits, including efficient land use, improved panel efficiency, and potential for large-scale deployment, floating solar represents a significant opportunity for the future of renewable energy.

Drone Inspection of a Large Floating Solar Farm

Addressing Safety Risks During O&M of Floating PV Systems

While floating solar farms are a promising technology for generating renewable energy, they also come with unique safety challenges for asset owners and their operations & maintenance (O&M) partners. Here are some of the safety risks that should be considered when working with floating PV systems:

  1. Watercraft Training/Boating Licenses: Floating solar farms require workers to operate boats to reach and maintain the equipment. It’s essential that workers are properly trained and have the necessary boating licenses to operate the watercraft safely.
  2. Life Vests Necessary for PPE: Personal protective equipment (PPE) should include life vests, which are essential in case of accidental falls into the water.
  3. Lighting Strikes: Floating solar panels are often located in open water areas, making them vulnerable to lightning strikes. To avoid electrical hazards, workers should avoid working on the panels during thunderstorms.
  4. Choppy Waters: Waves and choppy waters can make it challenging to move equipment around the floating solar farm. Workers should be cautious when navigating the equipment in such conditions to avoid accidents.
  5. High Winds: High winds can create an unstable working environment on a floating solar farm. Workers should take extra precautions when working in high-wind situations.
  6. Electrical Shock: The combination of water and electricity creates a significant risk of electrical shock. Workers must be aware of the electrical hazards and follow strict safety protocols to prevent accidents.
  7. Unstable Ground: Floating solar panels can shift or move in the water, creating unstable footing for workers. Proper safety protocols, including the use of harnesses, should be in place to prevent accidents due to unstable ground.
  8. Marine-Aquatic Wildlife: An additional safety risk to consider when working with floating PV systems is the potential for marine life encounters. Encounters with sharks, jellyfish, and other marine life are possible. Workers should be aware of the local wildlife and take appropriate precautions to ensure the safety of both themselves and any wildlife.

 

While floating solar farms present unique operational challenges, addressing such safety risks is critical to ensure the safety of workers and minimize the risk of accidents and injuries. Lack of proper safety measures can result in increased operating expenses, frequency of maintenance, and the depth of maintenance required.

Utilizing Aerial Thermography for Floating Solar Farms

Thermal Drone Inspection of Floating Solar Panels

Floating solar farms present unique operational challenges, and traditional methods of inspection and maintenance can be both time-consuming and costly. However, with advancements in drone technology and aerial thermography, inspections can be completed quickly and efficiently, allowing for more frequent inspections, better safety, and lower costs.

  1. Safety Increases with Drone Inspections: One of the primary benefits of using drones for maintenance inspections is increased safety. By using drones, workers are no longer required to physically enter potentially hazardous areas, reducing the risk of accidents or injuries.
  2. Finding Anomalies: Drones can collect the necessary data to process and analyze, which can then be geo-referenced to a digital twin letting operators know exactly where the issues are located.
  3. Faster Mobilization Time: Drones can be quickly deployed and pre-programmed for the necessary flight planning information. This makes them an ideal choice for inspection and maintenance of floating solar farms.
  4. Inspections Launched from On-Shore: Most floating solar farms are accessible by a drone from the shoreline. Shore-based inspections have no need for specialized boats or other marine equipment, further reducing costs and increasing efficiency.
  5. Advanced Software and Reporting: Flight software for planning all stages of the inspection, data analysis, and providing detailed deliverables is a must to complete the solar inspection process.

To further streamline the maintenance process of floating solar farms, drone service providers can be contracted to conduct inspections or in-house drone technicians can be utilized for these inspections. Once the drone flight is complete, data can be analyzed using specialized solar software that places data within a geo-referenced digital twin to identify trends and patterns that can indicate potential issues before they occur.

HAVE QUESTIONS ABOUT droneS? START HERE.
Speak With a Drone Expert Today!​
HAVE QUESTIONS ABOUT droneS? START HERE.
Speak With a Drone Expert Today!​
HAVE QUESTIONS ABOUT droneS? START HERE.
Speak With a Drone Expert Today!​

Drone service providers can use a company like Raptor Maps to process data and create useful reporting. Raptor Maps can classify and prioritize 100% of all anomalies on a solar site and provides the exact onsite location of each anomaly to be addressed. These results are available within a digital twin of a site for solar companies to use in optimizing and boosting plant production, ultimately increasing the rate of the return of their assets.

This proactive approach to maintenance can help reduce the risk of downtime and further increase the efficiency and effectiveness of asset management strategies. By utilizing drone technology and software solutions, floating solar farms can continue to thrive as a renewable energy source while maintaining safety and cost-effective operations.

About The Drone Life

The Drone Life

The Drone Life is an industry-leading drone service provider that is dedicated to delivering outstanding drone solutions and services to clients operating in the construction, engineering, and renewable energy industries. Our area of expertise is centered on providing aerial thermography inspection services for a diverse portfolio of solar installations. With our team’s extensive expertise in utilizing drones for large-scale PV systems, we deliver precise and comprehensive data collection services. By leveraging drone-based inspections, we provide a safer, more cost-effective, and time-efficient alternative to conventional methods. For more information, schedule a consultation at thedronelifenj.com/schedule-a-consultation.

About Raptor Maps

Raptor Maps

Raptor Maps is building solar’s integrated operating system, enabling the industry to scale and meet global climate goals. With intelligence for the entire solar industry, our solar lifecycle management platform (Raptor Solar) provides the tools and the system of record that asset owners, managers, O&M, developers, and EPCs need to build, maintain, and expand their solar plants. At the core of the platform are continuously evolving, geo-referenced digital twins of your solar assets, which integrate with the data sources you need to derive actionable insights. Raptor Solar bridges the gap between insight and action, improves asset health and power production, reduces risk, and ultimately increases the rate of return of solar assets. To learn more about Raptor Maps or to schedule a demo, contact us at raptormaps.com/contact.

Maintaining Solar Assets With Drones
What's included in YOUR GUIDE...

Techniques for Exposing Warrantiable Items on Your PV Sites.

A Proven Roadmap for Successfully Implementing Drones in Solar.

Strategies for Identifying DC Losses and Avoiding Downtime.

Disclaimer: This post may include affiliate links. If you click on them, we may receive a commission.

Related Posts

Identifying Potential-Induced Degradation (PID) in Solar Modules With Drone Thermography

Potential induced degradation (PID) is an issue that all solar stakeholders, especially owners and O&Ms should be taking seriously even if it only affects a small minority of modules.Given the substantial time and expense associated with testing individual modules or strings using IV-curve tracing or electroluminescence testing, operators can use drone thermography to identify modules potentially affected by PID in a timely and cost-effective manner. In this article we will explain why it is important to identify PID in solar modules.

Top 5 Solar Commissioning Best Practices You Should Prioritize in 2024

After months of hard work and problem-solving, your solar project is ready to start the commissioning process. Milestone payments, contractual deadlines, and the need for resources to move to the next project all hinge on a successful commissioning. While technical aspects are crucial to ensure your system is ready to hand off, other factors also play a significant role. In this article, we will review some technical and non-technical best practices that will make the asset owner’s life easier.

Drone Photo of Utility-scale PV System in California

Driving Success in Utility-Scale Solar O&M: Best Practices for Successful Operations

Efficient operations and maintenance (O&M) play a pivotal role in the success of utility-scale solar projects. As renewable energy continues to grow, ensuring optimal performance and longevity for solar installations becomes paramount. In the following article, we will explore the best practices that drive success in utility-scale solar O&M. We will discuss the importance of regular inspections and maintenance, the role of data-driven decision-making, and the integration of innovative drone technology.

Maintaining Solar Assets With Drones: A Guide to Maximizing Performance & Revenue with Aerial Thermography

Everything you need to know about leveraging drones across your PV portfolio.

Maintaining Solar Assets With Drones

A Proven Roadmap of Success for Implementing Drones on PV Sites.